Hailo נערכת לייצור המוני של שבבי AI במהלך 2020
29 יולי, 2019
יצרנית שבב הבינה המלאכותית מתל אביב נערכת לכניסה לשוקי הרכב, ה-IoT והעיר החכמה. המנכ"ל אור דנון חשף בראיון ל-Techtime חלק מסודות הארכיטקטורה הסודית של החברה
בתמונה למעלה: צוות פיתוח בהיילו. החברה התל אביבית מעסיקה כיום 65 עובדים
חברת היילו (Hailo) התל אביבית נערכת לקראת הייצור ההמוני של שבב הבינה המלאכותית שלה, העומד בתקן ASIL-B של תעשיית הרכב. הייצור הסדרתי מתוכנן להתבצע במהלך 2020. מייסד ומנכ"ל החברה, אור דנון, סיפר ל-Techtime שהשבב החדש ייקרא בשם Hailo-8. הוא פותח במסגרת עבודה משותפת של החברה מול יצרניות רכב, ומספק עמידה בדרישות של מערכות קריטיות להצלת חיים, כולל עמידה בטמפרטורות עבודה של עד 105°C.
על-פי הנתונים של החברה, השבב Hailo-8 מגיע לעוצמת עיבוד של 26 מיליארד פעולות בשנייה (26TOPS – Tera Operations Per Second) וליעילות של 3TOPS לכל ואט. הוא יעמוד בתקן המחמיר ISO 26262 ASIL-B ובתקן AEC Q 100 Grade 2. הוא בנוי מארבעה מרכיבים מרכזיים: מעבד תמונה (Image Signal Processor) המשפר את התמונה המגיעה מהחיישן לפני העברתה לזיהוי ברשת הנוירונית, מעבד H.264 המאפשר לטפל בתמונות וידאו, מעבד ARM-M4 המנהל את השבב, והרשת הנוירונית עצמה, המורכבת ממטריצה גמישה של יחידות עיבוד ויחידות זיכרון שניתן להגדיר את תצורתה בתוכנה.
חידוש הרעיון הישן של מעבדי DFP
חברת היילו הוקמה בחודש פברואר 2017 על-ידי המנכ"ל אור דנון, ה-CTO אבי באום ומנהלת הפיתוח העסקי הדר צייטלין. המשקיע הראשון בחברה היה זהר זיסאפל, המשמש כיום כיו"ר Hailo. עד היום החברה גייסה כ-24 מיליון דולר, כאשר הגיוס האחרון בהיקף של כ-21 מיליון דולר הסתיים בינואר 2019. החברה פיתחה ארכיטקטורה חדשה של שבב בינה מלאכותית עבור אבזרי קצה, המבצע את שלב ההרצה. כלומר, יישום ההסקות (Inference) של רשת נוירונית באבזרי קצה, במהירות רבה ובחסכון גדול באנרגיה. לדברי דנון, הארכיטקטורה מוגנת בכמה עשרות פטנטים. "היא משתייכת למשפחה נשכחת של מעבדים מסוג Data Flow Processors".
במעבדי DFP, פעולת העיבוד מתבצעת רק כאשר מוזנים נתונים אל המעבד, ואז הוא מבצע סדרה קבועה של פעולות על-גבי המידע הזה, ומעביר הלאה את התוצר המעובד. "בשנים האחרונות הסתבר שהישענות על רשתות נוירוניות היא שיטה יעילה ואמינה לפתור בעיות רבות, ולכן רוב מערכות הבינה המלאכותית שאנחנו רואים בשוק מבוססות על רשתות נוירוניות. כאן האתגר הוא מבני, מכיוון שהשבב צריך לממש מבנה של רשת נוירונית. ברשת נוירונית אתה יוצק נסיון אל תוך תיאור של מבנה, ולכן זהו פתרון יעיל מאוד בפתרון בעיות המבוססות על הכרת דוגמאות".
כיצד בנוי השבב שלכם? מה הם העקרונות המרכזיים של הארכיטקטורה?
דנון: "הארכיטקטורה שלנו מתארת את המבנה של רשת נוירונית ומקצה משאבים לכל שכבה ברשת. זיהינו שבתהליך העיבוד של ההסקות, יש הבדלים בין ההתנהגות של השכבות השונות ברשת הנוירונית, ולכן צריך לספק להן משאבים שונים. זאת בניגוד למתחרים שלנו המשתמשים בפתרונות כמו מעבדי GPU המעניקים לכל השכבות את אותה כמות של משאבים. תוכנת הפיתוח שלנו לומדת את הבעיה הספציפית, מאפיינת אותה, ויודעת להעביר לשבב הוראות כיצד לנהל את משאבים של כל אחת מהשכבות בצורה האופטימלית".
מה הם מרכיבי השבב?
"הרעיון הוא להשתמש ביחידות זיכרון קרובות מאוד ליחידות העיבוד. אנחנו מקצים יחידות זיכרון ויחידות עיבוד בהתאם לכל משימה, ועל-ידי כך משיגים מהירות עיבוד גבוהה מאוד, וחסכון גדול בהספק שהשבב צורך. הדבר הזה מאפשר לנו לעמוד בתקנים המחמירים של תעשיית הרכב, מכיוון שהשבב אינו מתחמם ויכול לעבוד בטמפרטורות הסביבה שהתעשייה דורשת".
אתם טוענים שהשבב שלכם יעיל מהפתרונות האחרים בשוק. אולם אין מדד אוניברסלי למדוד שבבי בינה מלאכותית.
"אנחנו מודדים את הביצועים שלנו באמצעות בדיקת כמה פעולות לוואט אנחנו מבצעים ברשת ניורונית ספציפית. כיום ישנו קונסורציום MLPerf המנסה להגדיר מדד בר-השוואה לרשתות נוירוניות אמיתיות. בכל מה שקשור למוצרי קצה, התעשייה ככל הנראה הולכת לכיוון של מדידת מספר הפעולות לוואט שהרשת הנוירונית מבצעת על מטלה מסויימת, כמו תמונה למשל".
כיום מתפתחות שיטות להטעיית הזיהוי של רשתות נוירוניות. אתם מתמודדים עם הבעיה?
"אפשר להתייחס אל הטעיות AI כאל חולשות, בדומה לאופן שבו מתייחסים אל חולשות אבטחה. בתחילה החולשות של מערכות תוכנה הפתיעו את התעשייה, אולם בהדרגה מוצאים להן פתרונות. בתחום הבינה המלאכותית, מדובר קודם כל בבעיה קונספטואלית שאין לה פתרון ברמת הסיליקון. אבל אם הרשת אומנה בצורה לא נכונה, והתוקף יודע כיצד היא אומנה, הוא יכול לתכנן תקיפה נגדה. אנחנו מתמודדים גם עם הבעיה הזאת, וברמה העקרונית היא מבטאת את היתרון של התקנת מערכות בינה מלאכותית בקצות הרשת, מכיוון שבאופן הזה קיימות פחות חולשות לאורך מסלול העברת המידע".
חברת היילו צומחת מהר, ומעסיקה כיום כ-65 עובדים ונמצאת בתהליך גיוס של עובדים נוספים. היא ממקדת את מאמציה בשני שווקים עיקריים: שוק הרכב ושוק אבזרי הקצה (IoT). שני שווקים שהם גם צפויים להיות גדולים מאוד, והם גם תובעניים מאוד, מכיוון שבשניהם יש צורך במוצר מאוד אמין, זול וחסכוני מאוד בהספק. דנון: "בהרבה מאוד מובנים המצלמה ברכב לא שונה בהרבה ממצלמת IoT בעיר החכמה. אלו שני תחומים שיהיו מאוד דומיננטיים, וחולקים ביניהם הרבה מאוד דרישות משותפות".
פורסם בקטגוריות: בינה מלאכותית , חדשות , סמיקונדקטורס , תעשייה ישראלית
פורסם בתגיות: AI , hailo , בינה מלאכותית , היילו , רשתות נוירוניות