מאגד המטרולוגיה הישראלי MDM השיג פריצות דרך עולמיות

בתמונה למעלה: ד”ר דורון משולח מאפלייד מטיריאלס, יו”ר מאגד Multi-Dimentional Metrology 

בכנס הסיכום של המאגד הישראלי לפיתוח טכנולוגיות תשתיתיות בתחום המטרולוגיה (MDM – Multi-Dimensional Metrology) של ייצור שבבים שהתקיים לפני כשבועיים, התברר ששיתופי הפעולה בין החברות הישראליות והאקדמיה הולידו פיתוחים חדשניים ברמה עולמית, באחד מתחומי הטכנולוגיה הקשים והמאתגרים בתעשיית ייצור שבבים.

יו”ר המאגד, ד”ר דורון משולח, מנהל טכנולוגיות ושיתופי פעולה אסטרטגיים בחברת אפלייד מטיריאלס ישראל, חשף נתונים על תעשיית המטרולוגיה הישראלית. ההשקעות במערכות המטרולוגיה המשמשות בקווי הייצור של השבבים הינן בהיקף של כ-12%-10% מההשקעות בציוד הייצור. מדובר בשוק גדול, הצפוי לגדול בשנים הקרובות, עקב הגידול הצפוי בהשקעות בתשתיות ייצור שבבים. להערכת חברת גרטנר, בשנת 2020 יגיע היקף השוק העולמי קרוב ל-5.6 מיליארד דולר, ויצמח להיקף של כ-7 מיליארד דולר בשנת 2024. לדברי דר משולח, כיום פועלות בישראל חברות מטרולוגיה בעלות משקל משמעותי בתחום, וביחד ישראל אחראית לכשליש מהשוק בעולם.

התעשייה דורשת פתרונות מטרולוגיה חדשים

חברות המטרולוגיה הגדולות בישראל לתעשיית השבבים הן אפלייד מטיריאלס ישראל, נובה, KLA, ברוקר וקמטק. ההערכה היא כי ביחד הן מעסיקות באופן ישיר כ-3,300 עובדים ובסך הכל מספקות למשק כ-10,000 משרות. חברות מטרולוגיה ישראליות רוכשות מספקים מקומיים מוצרים ושירותים בהיקף שנתי של כ-350 מיליון דולר. כמו-כן, מקיימות החברות שיתופי פעולה עם האקדמיה, התורמים לשיתוף והעברת ידע בין האקדמיה לתעשייה.

תעשיית ייצור השבבים מתקדמת בקצב גבוה: כדי לעמוד בצרכים הגוברים, נמשך המאמץ להקטין ולצופף את ההתקנים, לשפר את ביצועיהם ולהקטין את צריכת ההספק שלהם. כמו כן, משתמשים גם בחומרים חדשים ומפתחים מבנים תלת-ממדיים עם גיאומטריות מורכבות. למשל, הטרנזיסטורים המתקדמים המיוצרים כיום הם תלת-ממדיים ורכיבי זיכרון מתקדמים גם הם תלת-ממדיים ובנויים מעשרות שכבות. כל אלה מהווים אתגרים לביצוע מדידות ובדיקות בקרת איכות הייצור בקווי הייצור, אתגרים הדורשים מענה כדי שקווי הייצור יוכלו להמשיך לייצר ביעילות ובתפוקות גבוהות.

על הרקע הזה הוקם מאגד MDM בשנת 2017 במסגרת תכנית מגנ”ט ברשות החדשנות. במישור האסטרטגי, מטרת המאגד הייתה להבטיח שתעשיית המטרולוגיה הישראלית תשמור על מעמד מוביל בעולם, בפרט לדורות החדשים של שבבים. במישור הטכנולוגי, מטרתו הייתה לבחון את ההיתכנות הטכנולוגית של מגוון רעיונות חדשים, ובכלל זה של טכנולוגיות המבוססות על היתוך מידע המגיע ממספר מקורות מידע.

במאגד השתתפו החברות אפלייד מטיריאלס ישראל, אינטל, נובה, ברוקר, ננומושן, אל-מול וננוניקס. מהאקדמיה השתתפו קבוצות מחקר מאוניברסיטאות בר אילן, בן גוריון, תל אביב, ממכון וייצמן ומהטכניון. עדיין מוקדם להעריך את ההצלחה האסטרטגית של המאגד, מכיוון שזמן הפיתוח של טכנולוגיות חדשות בתעשיית המטרולוגיה הוא ארוך מאוד ודרושות כ-5-10 שנים לפיתוח והטמעת מוצר חדשני בשוק. זמן הפיתוח הארוך והאתגרים הטכנולוגיים הם חסרון אבל יש להם גם יתרון. דר משולח: “אמנם הקושי הטכנולוגי, הסיכון וזמן הפיתוח הארוך מעמידים רף כניסה גבוה מאוד המקשה על כניסת שחקנים חדשים, אך הרווח ממוצרים חדשניים הינו גבוה“.

היתוך מידע המגיע מ-SEM, מ-OCD ומקרינת X-Ray

במישור הטכנולוגי הציג המאגד הצלחה יוצאת דופן: בשנה השלישית בוצעו 13 פרויקטים שהניבו 16 מאמרים אקדמיים ו-5 פטנטים הנמצאים בשלבים שונים של תהליכי רישום. ד”ר משולח: “פותח בין היתר גלאי השדה המגנטי הקטן והטוב ביותר מסוגו בעולם לשיפור ביצועי מיקרוסקופ אלקטרונים סורק, פותחה שיטה שהודגמה על מיקרוסקופ מסוג  Atomic Force Microscope – AFM המהיר מסוגו בעולם, פותחו אלגוריתמים מסוג חדש של לימוד מכונה וטכנולוגיות חדשניות נוספות. מספר פרויקטים ושיתופי פעולה ימשיכו גם לאחר סיום פעולת המאגד”.

ד”ר שי וולפלינג, סמנכ”ל טכנולוגיות (CTO) של חברת נובה, הסביר כיצד לימוד מכונה פותח אפשרויות חדשות בעולם המטרולוגיה. נובה מייצרת מערכות מדידה אופטיות המודדות גדלים בקו הייצור ((In-line. מדובר במדידה עקיפה: מאירים על מבנים בפרוסה באור עם ספקטרום רחב של אורכי גל, וחיישנים אוספים את האור המוחזר מהפרוסה (ספקטרום) ומודדים בכל אורך גל את העוצמה. במקביל, המערכת בונה מודל גיאומטרי תלת-ממדי משוער של המבנה הנבדק, ובאמצעות פתרון של משוואות מקסוול המתארות את החזר האור מהמבנה מחשבים את הספקטרום המוחזר הצפוי. משווים בין הספקטרום המדוד למחושב, ומבצעים שינויים במודל הגיאומטרי עד לקבלת התאמה מספקת בין הספקטרום הנמדד לספקטרום המחושב.

ד”ר וולפלינג: “כיום אנחנו מתחילים להשתמש בטכנולוגיה של לימוד מכונה. אם יש לנו סיגנל (ספקטרום) ויש לנו מדידת ייחוס כלשהי – אז במקום לפתור את משוואת מקסוול, אנחנו יכולים לחבר בין הספקטרום לבין מדידות הייחוס. הקצב בו התעשייה מאמצת פתרונות מטרולוגיה אופטית מבוססי לימוד מכונה (ML) מכפיל את עצמו בכל שנה. היתרון בפיתוח ואימוץ טכנולוגיות אלה, הוא הגברת רגישות האות, וקבלת תפוקה טובה יותר מבלי לפגוע ברמת הדיוק המטרולוגית. בנוסף, כיוון שמחזורי הפיתוח אצל הלקוחות קצרים יותר, קצב הטמעת הפתרונות חייב להתקצר בהתאם, והטמעת פתרונות מבוססי לימוד מכונה היא מהירה יותר מאשר הטמעה של פתרונות מבוססי מודלים פיסיקלים.

השילוב בין מודלים פיסיקליים מסורתיים עם יכולות לימוד מכונה, יחד עם קישוריות לביג דאטה, צפוי לשפר את היכולות המטרולוגיות בשנים הבאות. בתחום הזה הציגו צוותים מאפלייד מטריאלס ונובה הישג מרשים, כאשר הם קישרו בין מיקרוסקופ אלקטרונים סורק SEM של אפלייד מטיריאלס המשמש למדידת ייחוס, לבין מכונות המדידה האופטית מסוג OCD של נובה. הם הראו כיצד תוך שימוש באלגוריתם לימוד מכונה ניתן לשערך גדלים על-פני הפרוסה כולה בזמן קצר מאד, דבר שלא ניתן היה לעשות בכלים הקיימים כיום, גישה המאפשרת יישומים חדשים.

שיתוף פעולה דומה התקיים בין אפלייד מטיריאלס לבין חברת ברוקר שבמסגרתו שולבו מדידות ממכונות בדיקה מבוססות X-Ray של ברוקר עם מדידות ייחוס המגיעות ממיקרוסקופ אלקטרונים סורק SEM של אפלייד מטיריאלס. על-ידי כך הצליחו הצוותים מאפלייד מטריאלס וברוקר לשחזר באופן מדויק יותר את המבנה התלת-מימדי של דגמים גבוהים וצרים מאוד של זכרונות תלת-ממדיים ובהם חורים שעומקם גדול פי 50 מקוטרם.

חברת אל-מול פיתחה בשיתוף עם נובה ומכון וייצמן את גלאי היונים הטוב ביותר מסוגו בעולם, ובמכון וייצמן בשיתוף עם נובה פותחה שיטת מדידה אופטית המאפשרת זיהוי שכבות דקות שונות על פרוסה הנבדלות זו מזו בריכוזים קטנים מאד של הרכב חומרים.

מיקרוסקופ AFM המהיר בעולם והמגנטומטר הקטן והרגיש בעולם

שיתוף פעולה נוסף הביא לפיתוח שיטת בקרה למכשירAtomic Force Microscope – AFM בעל יכולות חסרות תקדים. מיקרוסקופ AFM נחשב למדויק מאוד לביצוע מדידות פני-שטח, אולם הוא איטי מאד. בשיתוף פעולה בין הטכניון, נאנומושן ואפלייד מטריאלס, פותחה והודגמה שיטת הנעה ובקרה מסוג חדש, המאפשרת מדידה ברזולוציה תת-ננומטרית במהירות סריקה גבוהה. מכלול ההנעה פותח על-ידי נאנומושן ואלגוריתם הבקרה שפותח בטכניון יושם בכרטיס FPGA מסחרי מהיר.

התוצאה: מיקרוסקופ AFM המאפשר מדידה של פני-שטח ברזולוציה גבוהה ובמהירות גבוהה, ומדידה תלת-ממדית של מבנים ברזולוציה נמוכה יותר אולם עדיין מהירה בקנה מידה תעשייתי. שיתוף פעולה נוסף בין נובה, נאנומושן ובר אילן  בנושא ראמן הוליד מכלול הגברה ייחודי של מיקרו-מהוד שפותח על-ידי חברת נאנומושן.

קבוצות אחרות מבר אילן ובן גוריון, ובשיתוף עם אפלייד מטריאלס פיתחו את גלאי השדה המגנטי הקטן והרגיש מסוגו בעולם. הוא נועד להתמודד עם בעיה מפתיעה: מערכות המטרולוגיה במפעלי הייצור נמצאות בסביבות עבודה בהן השדות המגנטיים נמוכים מאד, אולם לעיתים בסביבת העבודה נוצרות הפרעות מגנטיות בלתי צפויות. אלה עלולות לגרום להסטה בלתי רצויה של קרן האלקטרונים בתוך מיקרוסקופ אלקטרונים סורק SEM, כאשר גם שדות מגנטיים קטנים מאוד יכולים לגרום לעיוות התמונה ולפגוע במדידה.

במסגרת הפרוייקט, פותח חיישן המבוסס על תופעת Planar Hall Effect. הוא בנוי מחומר פרו מגנטי אשר משנה את התנגדותו למעבר זרם כפונקציה של שינויים בשדה המגנטי. באמצעות תכנון מיוחד ושימוש ברכזי שטף מגנטי, בנו החוקרים מבר אילן ובן גוריון גלאי זעיר, בגודל של כ-15 על 15 על 3 מ”מ בעל רגישות של 5 פיקו טסלה לשורש הרץ – פי 10 מהחיישן מסוג זה הרגיש ביותר בעולם. חברת אפלייד מטיריאלס בוחנת את ביצועי הגלאי וכיצד ניתן לשלב אותו בתוך מערכות SEM של החברה, וזאת על-מנת למדוד את ההפרעות בשדה המגנטי ולבצע תיקונים של מיקום קרן האלקטרונים הסורקת.

הדוגמאות האלה הם רק חלק קטן מהישגי המאגד. המדען הראשי במשרד הכלכלה והתעשייה ויו”ר רשות החדשנות, ד”ר עמי אפלבאום, ברך את המשתתפים בכנס הנעילה של המאגד, ואמר שהוא הוכיח שחברות ישראליות מתחרות יכולות לשתף פעולה בפיתוח טכנולוגיות גנריות משותפות. “כשרואים את מה שהצלחתם לעשות, חייבים להודות שהדבר אפשרי”, אמר.

מאגד המטרולוגיה הישראלי מחפש מענה למהפיכת השבבים התלת-מימדיים

במבט מבחוץ, חוק מור בגרסתו המקורית יוצא מהמחזור. החוק המתייחס להכפלת מספר הטרנזיסטורים בשבבים מתקדמים בכל 18 חודשים, כבר כמעט ואינו מתקיים. המעבר לגיאומטריות קטנות כמו 7 ננומטר ו-5 ננומטר נעשה קשה יותר ודורש זמן פיתוח והיערכות ארוך מבעבר. אלא שהתעשייה מתפתחת במימדים נוספים, לא רק בגודל, ומציבה אתגרים חדשים בפני מערכות הבדיקה והמדידה בקווי הייצור ובמעבדות הפיתוח.

“השינויים בתעשיית ייצור השבבים מחייבים אותנו לפתח טכנולוגיות שהיה נדמה שהן בלתי אפשריות עד לאחרונה”, הסביר ל-Techtime מנהל הטכנולוגיות ושיתופי הפעולה האסטרטגיים בחברת אפלייד מטיריאלס ישראל (PDC), ד”ר דורון משולח. “אנחנו רואים למשל שכבר היום יש מעבר למבנים תלת-מימדיים: יצרני זכרונות החלו לייצר מבנים הכוללים כמה עשרות תאי זיכרון אחד על השני וגם הטרנזיסטורים עצמם הפכו לתלת-מימדיים, עם הופעתם של טרנזיסטורי FinFET, במטרה להגדיל את מספרם בשטח נתון. כעת מדברים בתעשייה על ייצור של טרנזיסטורים ישירות אחד על-גבי השני.

“תעשיית המטרולוגיה (מדידה מדויקת ובקרת הייצור של שבבים מתקדמים) תצטרך לספק מענה להתפתחויות האלה. בישראל הדבר חשוב במיוחד, בזכות המעמד שלנו בתעשייה הזאת. ישראל היא מעצמה טכנולוגית עולמית בתחום המטרולוגיה לתעשיית השבבים, ואנחנו חייבים לשמור על המעמד הזה. המטרה של מאגד השבבים הישראלי MDM, היא לחקור ולבחון היתכנות טכנולוגית של רעיונות חדשים וטכנולוגיות תשתיתיות, שיאפשרו לתעשייה הישראלית להביא לשוק מוצרים חדשים ולשמור על מעמדה בתחום”.

גם פיסיקאי וגם מנהל

ד”ר דורון משולח הצטרף לחברת אפלייד מטיריאלס ישראל (Applied Materials) בשנת 2002 לאחר שסיים את לימודי הדוקטורט בפיסיקה במכון וייצמן בתחום האופטיקה האולטרה-מהירה ואינטראקציה בין אור לחומר. במסגרת המחקר הוא פיתח ובנה מכשיר לייזר רב-עוצמה המייצר פולסים קצרים באורך של מספר פמטו-שניות ושיטות למדידה שלהם. במרכז הפיתוח והייצור הישראלי של אפלייד הוא עסק במחקר בסיסי וניהל קבוצת מחקר בתחום המיקרוסקופיה. בהמשך, שימש כמנהל מוצר והיה אחראי על ניהול מוצר מורכב לאיתור פגמים ולבקרת ייצור שבבים  אצל לקוח מרכזי.

מערכת VeritySEM של אפלייד מטיריאלס ישראל, המבצעת בדיקות של שבבי זיכרון תלת-מימדיים
מערכת VeritySEM של אפלייד מטיריאלס ישראל, המבצעת בדיקות של שבבי זיכרון תלת-מימדיים

לפני מספר חודשים הוא מונה לתפקיד מנהל הטכנולוגיות ושיתופי הפעולה האסטרטגיים של אפלייד מטיריאלס ישראל, אשר אחראית על פיתוח וייצור מערכות המטרולוגיה והבדיקה של החברה העולמית. הפעילות של החברה בישראל מתמקדת בעיקר שני תחומים מרכזיים: מכונות המבוססות על מיקרוסקופים אלקטרוניים המשמשות לאיפיון פגמים ולביצוע מדידות של גדלים קריטיים בתהליך הייצור של שבבים, ומכונות המבוססות על מיקרוסקופים אופטיים לסריקה מהירה של פרוסות סיליקון ומסכות ליתוגרפיה למציאת פגמים ובקרת תהליך הייצור וההדפסה של שבבים.

מיקרוסקופים אלקטרוניים הם בעלי רזולוציה גבוהה מאד אבל איטיים יחסית, ומערכות אופטיות הן מהירות מאוד אבל בעלות רזולוציה נמוכה יותר. לדברי משולח, נקודת העבודה האופטימלית בין הרזולוציה לבין המהירות נקבעת על-ידי כל לקוח בנפרד, בהתאם לצרכים הייחודיים שלו.

שיתוף פעולה ישראלי

מאגד השבבים הישראלי MDM – Multi Dimensional Metrology, התחיל לפעול בחודש יולי 2017, ובשבוע שעבר סיכם את שנת הפעילות הראשונה שלו בכנס טכנולוגי של חברי המאגד. המאגד עוסק במחקר ופיתוח טכנולוגיות מדידה ובקרת תהליכים בתעשיית השבבים, המבוססות על היתוך מידע המגיע ממקורות רבים, תוך כדי שיתופי פעולה בין החברות והאקדמיה. הוא הוקם ביוזמת חברת אפלייד מטיריאלס ישראל (Applied Materials Israel)  ויו”ר המאגד היום הוא ד”ר משולח. היו”ר המקים של המאגד היה יורם עוזיאל שפרש לאחרונה מהחברה.

המאגד פועל במסגרת תוכנית מגנ”ט ברשות החדשנות. החברות המשתתפות במאגד הן אפלייד מטיריאלס ישראל מרחובות, NOVA Measuring Instruments מרחובות המספקת ציוד למדידת מדדים קריטיים בטכנולוגיות אופטיות ואחרות, חברת Bruker (לשעבר ג’ורדן ואלי) המפתחת מערכות מטרולוגיה מבוססות X-ray, חברת El-Mul מנס ציונה המייצרת גלאים לתעשיית הננו-אלקטרוניקה וגם חברת אינטל.

 

המבנה התלת-מימדי של טרנזיסטור FinFET
המבנה התלת-מימדי של טרנזיסטור FinFET

משתתפים נוספים הם חברת Nanomotion  מיוקנעם המפתחת מערכות שינוע בדיוק ננומטרי, חברת Nanonics Imaging הירושלמית המספקת טכנולוגיות מדידה מדויקות באמצעות קירבה אל המשטח הנמדד (Atomic Force Microscope),  וחברת המחשבים Dell EMC. קבוצות המחקר האקדמיות המשתתפות במאגד מגיעות מהטכניון, מאוניברסיטת בן-גוריון, מאוניברסיטת תל-אביב, מאוניברסיטת בר-אילן מהאוניברסיטה העברית וממכון וייצמן למדע.

ארבעת עמודי התווך של תעשיית המטרולוגיה העתידית

משולח: “במאגד פועלות ארבע קבוצות עבודה המפתחות את הטכנולוגיות של הדור הבא, שיאפשרו לתעשיית המטרולוגיה הישראלית לשמור על היתרון שלה בשוק הזה. הקבוצה הראשונה חוקרת שיטות חדשות לאפיון וניתוח חומרים המשמשים בתעשיית השבבים. המטרה היא לקבל מידע כמו המבנה הפנימי של פרוסת הסיליקון במהלך הייצור, ותכונות כמו סוג החומר ומבנה השכבות. פיתוח כזה יאפשר לנו לספק יכולות חדשות באמצעות מדידות לא הרסניות.

“קבוצת העבודה השנייה בודקת שיטות חדשות להדמייה של מבנים על פרוסת הסיליקון. המחקר מתבצע בשילוב מגוון שיטות, כמו קרני רנטגן, מיקרוסקופיה אלקטרונית, מיקרוסקופיה של שדה קרוב, מערכות אופטיות ועוד. אנחנו מחפשים דרכים חדשות לאתר פגמים בייצור. רעיון שאנחנו בודקים הוא שילוב מידע המגיע ממספר שיטות מדידה שונות, בכדי  לקבל תובנות חדשות ומידע חדש על הפרוסה. בעולם האופטי, למשל, אנחנו מנסים לעצב את כתם האור הפוגע בפרוסת הסיליקון, באופן שתיווצר אינטראקציה טובה יותר בין האור ובין החומר. אנחנו גם בודקים היתכנות למקורות אור חדשים באורכי גל קצרים, כמו למשל, 100-200 ננומטר, מתוך מטרה לקבל רזולוציה גבוהה בקרינה שאינה הרסנית”.

ארכיטקטורות מחשוב חדשות

“קבוצת העבודה השלישית מתמקדת באלגוריתמיקה וארכיטקטורות תוכנה לעיבוד המידע. אנחנו חוקרים מספר תחומים במקביל כדי לשפר את יכולות הסיווג האוטומטית של פגמים המתגלים על הפרוסה, כדי להבין טוב יותר את אופי הפגמים והסיבות למקורם. במסגרת הזאת אנחנו בודקים רעיונות כמו שילוב בין סנסורים המאפשרים להשתמש במידע קיים ושאינו מנוצל, שימוש בטכנולוגיות Big Data כדי למצוא קשרים בין מדידות מסוגים שונים וגם חוקרים ארכיטקטורות מחשוב חדשות: למשל, כיצד לאסוף את המידע המגיע ממספר מכונות שונות בקו הייצור וכיצד לנהל את כל המידע הזה.

“קבוצת העבודה הרביעית מתמקדת בהיבטים מערכתיים מכניים. צריך לזכור שככל שקטן גדלו של הטרנזיסטור, יש צורך במערכות בעלות יציבות והדירות מכנית גבוהה ביותר.  אנחנו בודקים את ההיתכנות של רעיונות חדשים, כמו למשל הכנסת מיקרוסקופ מסוג AFM מהיר מאוד אל קו הייצור עצמו, והדבר מחייב מערכות מכניות מדוייקות ויציבות ברמה של תת-ננומטר. פעילות המאגד מאפשרת לקדם גם חברות קטנות ובינוניות, וכן להגדיל את מאגר כוח האדם בישראל העוסק במטרולוגיה ולחשוף אליו סטודנטים וחוקרים מהאקדמיה”.